
exchange between N 2 and DCI molecules but smaller than the VT relaxation length. We also 
see that even for moderate D c = 5000h, (i m) the value of N e in a mixing laser lasing in the 
fundamental transitions is 25% higher than in an ordinary GDL and may reach 62 J/g for F k = 
300. With increasing D c this difference becomes even larger. At the same time for small 
D c = 500h, the value of N e is the same in both types of laser. This is because for a small 
D c only a small fraction of the energy stored in the N 2 vibrations is converted into the 
energy of coherent radiation. In a mixing GDL operating on transitions with m = 2 a value 
N~ 10i J/g can be obtained even for Dc~2000h,. 

In summary, our analysis shows that a gasdynamic laser with mixing of N 2 and DCI can be 
a very efficient device for obtaining radiation with ~ = 5-7 pm (fundamental-frequency tran- 
sitions) and with X = 2.5-2.8 pm (harmonics). The specific radiant energy may reach 70 and 
20 J/g, respectively, in systems of moderate size. 
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NUMERICAL ANALYSIS OF A PLASMA JET IN A MAGNETIC FIELD 

V. I. Ermilin, V. K. Kolesnikov, 
and V. G. Petrov 

L~C 533.95 

The behavior of supersonic plasma jets in an external magnetic field is of interest for 
problems involving the use of plasma accelerators of various types in space technology. The 
interplay of the jet and the magnetic field must be known if such problems are to be solved. 
The complexity of the pertinent experiments stimulates the use of computer simulation to ob- 
tain fuller theoretical concepts about the nature of the behavior of plasma jets. Compara- 
tively few theoretical studies on plasma formations in a magnetic field have dealt directly 
with supersonic plasma jets. We note that in [i] Savel'ev used the one-temperature MHD ap- 
proximation for a numerical analysis of a plane plasma jet bounded in the transverse direc- 

tion. 

In the work reported here, within the framework of the two-temperature MHD model we 
have considered the behavior of a highly underexpanded (nearly a vacuum type) supersonic 
plasma jet with a superimposed magnetic field, taking the induced magnetic field into account. 
We have studied the effect of the magnetic field on the geometry of the jet boundary, the 
nature of the flow, the distribution of parameters in the jet, and the perturbation of the 
external magnetic field by the electric currents of the jet. 

Solnechnogorsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 4, 
pp. 9-14, July-August, 1993. Original article submitted July 27, 1992. 
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i. The Physical Model. We consider an axisymmetric, highly underexpanded jet of com- 
pletely ionized plasma flowing into a nonconducting medium with a finite, but fairly low 
pressure. The plasma is assumed to have a finite conductivity, which is a function of the 
electron temperature. The external magnetic field is assumed to be directed along the jet 
axis so that it does not change the position of the axis in space and the jet retains its 
axial symmetry. The MHD approximation is used to describe the jet. 

In a zero magnetic field the approximation of a continuous medium in the jets flowing 
into a highly rarefied space is generally incorrect since the mean free path of particles 
at a distance from the source becomes comparable with the characteristic jet dimensions. If 
the magnetic field is fairly strong, however, the mean free path of ions in the direction 
perpendicular to the magnetic vector is determined by the Larmor radius, which may be smaller 
than the characteristic transverse dimension of the jet. The magnetic field also causes the 
longitudinal characteristic dimension of the jet to increase. The hydrodynamic description 
thus becomes applicable to the entire jet: in the initial part because of the high collision 
rate and in the subsequent part because of the high Larmor frequency and the large character- 
istic longitudinal dimension of the jet. Gus'kov et al. [2] and Cowling [3] point out that 
a qualitatively correct result can be obtained by using the continuous medium model, even 
when this model is formally inapplicable. 

The flow pattern is described by using the following model assumption, simplifying the 
two-fluid system of equations of plasma dynamics obtained in [4]. 

i. The ionic gas is considered to be nondissipative and electron + ion energy transfer 
is ignored in view of the high mass ratio and the relative low plasma density. 

2. The polytropic equation of state is used instead of the energy equation for elec- 
trons. This is because in many cases the electronic thermal diffusivity is fairly 
high so that the electronic gas may be considered to be virtually isothermal or 
nearly so. The problems with using this approximation was discussed in greater de- 
tail in [5]. Instead of the polytrope equation, however, we can use other model or 
empirical relations since the variation of these relations does not alter the quali- 
tative picture of the interaction of the plasma jet with the magnetic field. 

3. The Hall currents are ignored. This approximation excludes the current loop in the 
longitudinal section of the jet. Inclusion of the Hall currents would cause an 
azimuthal ponderomotive force to appear and induce various parts of the jet to rotate 
about its axis in different directions. The effect of the Hall constant on the 
flare angle of the jet is determined by the centrifugal force due to the azimuthal 
rotation of the plasma. In a real case inclusion of the finite but large mean free 
path of the particles along the magnetic field of the interaction of parts of the 
plasma turning in different directions results in a low total azimuthal velocity 
and, hence, a small centrifugal force. 

4. The electrical currents are assumed not to be carried out of the plasma source, i.e., 
the current density through the initial cross section is zero. 

With the above assumptions, if the radius of the initial cross section of the jet and 
the velocity and density on the axis of the jet are taken to be the main dimensional quanti- 
ties, the dynamic equation of the plasma [4] can be written in dimensionless form 

div (pu) = 0; ( 1 . 1 )  
p ( u V ) u +  V p +  Vp~ = j X H ;  ( 1 . 2 )  

p = eonst pT; ( 1 . 3 )  
T3/2. = c o n s t ~ e  , ( 1 . 4 )  

p~=~T~; (1.5) 
T~ = const pV~-l; ( 1 . 6 )  

i = o u •  (1.7) 

where p and Pe are the ionic and electronic pressure; y is the adiabatic exponent for the 
ionic gas; Ye is the polytropic exponent for the electronic gas; u =(u,, 0, u~). H =(H~H~, 0, 

0 0 H~ +H~) are the plasma-velocity and magnetic vectors in the(r, % z) coordinate system; H r 
0 and H z are the components of the applied magnetic field; and H a and H~ are the components 

of the induced field. The rest of the notation is conventional. 
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The simplicity of Eq. (1.7) is determined by the axial symmetry of the problem and the 
boundary conditions. The conductivity is zero and current in the medium surrounding the 
plasma jet and currents do not flow through the jet boundary. When assumptions 2-4 are made 
the only nonzero component of the current-density vector is azimuthal. 

The magnetic field induced by the electrical currents in the jet is determined by Max- 
well's equations. For the stationary formulation of the problem they can be written in di- 
mensionless form, 

divH ~=0; (1 .8 )  

curl tt ~= 4~j. (1 .9 )  

Equat ions  (1 .8 )  and (1 .9 )  a re  v a l i d  in a l l  space ,  i . e . ,  in t he  j e t  and in the  sur round-  
ing medium. The plasma and the  sur rounding  medium have the  same magnet ic  s u s c e p t i b i l i t y ,  
equal to one. The boundary conditions for (1.8) and (1.9) are set for infinity, where the in- 
duced magnetic field is zero. 

2. Method of Solution. The system of equations (1.i)-(1.9) is solved by separately 
solving the dynamic equations of the plasma (1.1)-(1.7) and Maxwell's equations (1.8), (1.9), 
and then iterating them together until a consistent solution is obtained. 

We solved Eqs. (1.1)-(1.7) by using the finite-difference march method, based on an 
explicit scheme of second order-of-magnitude accuracy, of the Lax-Wendrof type, and expounded 
in [6]. In determining the jet boundary we took the effect of the magnetic field into ac- 
count; one of the equations, as in [6], was the projection of the equation of motion (1.2) 
onto the r axis of the cylindrical coordinate system, and the integral of the equation of 
motion (1.2) along the jet boundary was considered to be the second equation. 

On the basis of potential theory, we write the solution of Eqs. (1.8) and (1.9) as 

. . . . .  f o d r ;  (2 1) 
V 

H~(r ,z)= j~(r',~ ,z)Tzz dr', (2 .2 )  
V 

where B is  the  d i s t a n c e  from the  p o i n t  (r, % z) (because of  the  a x i a l  symmetry we s e t  fp = 0) ,  
�9 * / / 

where H i and H~ are  de te rmined ,  to  the  e lement  of  volume dv' wi th  c o o r d i n a t e s  (r ,  ~ ,  z'). 

Integrals (2.1) and (2.2) are improper and the integrands have a singularity at B = O, 
but they can be shown to converge uniformly. They are calculated by using the cell method 
[7], with second order-of-magnitude accuracy. 

The integration in (2.1) and (2.2) is carried out over the volume of the jet. Since 
the jet generally is unbounded in the z direction, we choose some value z k sufficiently dis- 
tant from the source for the current density to be zero beyond it (z > Zk). This assumption 
is allowable in the problem under consideration since it does not change the structure of the 
electrical currents in the jet but merely cuts off the contribution of distant current re- 
gions to the induced magnetic field. How the contribution of the currents cut off affects 
the induced magnetic field is assessed by appropriate parametric calculations for various 
values of z k. In the calculations the effect of the currents of the regions cut off was in- 
significant for the bulk of the jet. 

The calculations were performed on a net with i00 points in the radial direction. The 
spacing in the longitudinal direction was determined from the Courant stability condition. 
An uneven auxiliary net of 20 points along the r coordinate axis and i00 points along the z 
coordinate axis was introduced to calculate the induced magnetic field. The values of the 
components of the magnetic vector calculated at the node of this net when solving Eqs. (i.i)- 
(1.7) were interpolated to the main net. Parametric calculations of the induced magnetic 
field [at an arbitrary point it was determined from interpolation on the auxiliary net and by 
solving (2.1) and (2.2)] showed that this net is applicable. 

3. Results of Numerical Analyses. We considered an argon plasma jet at constant param- 
eters in the!initial cross section on the jet axis: density n a = 1014 cm -s, ion and electron 
temperature (T i = T e) = 0.2 eV, velocity u a = 6'i0 s cm/sec. The external magnetic field was 
assumed to be uniform, directed along the z axis, and have a single component H ~ = (0, O. Hi). 
The radius R a of the initial cross section is assumed to be i0 and 50 cm, Ye = i.I, and 
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y = 1.67. We considered the case of classical conduction [4]: The plasma parameters in the 
initial cross section (density, two components of the velocity vector) were given by the 
model relations 

F=exp(--Cr~),r~i0, I], /=1,2,3 ..... ur=e~const(sin~) l 
% f 

(F= ~, u=] ~, C= [c~, c2] T are constants). The magnitude of the vector of the applied magnetic 
field was varied. 

We studied the underexpanded jet with a l0 s ratio of the density on the jet axis in the 
initial cross section to the density of the external medium. With this density ratio the jet 
behaves virtually as a vacuum jet. 

First we consider the effect of a magnetic field on a plasma jet with R a = i0 cm. In 
this case the magnetic Reynolds number Re m = i. As is seen from Fig. I, where the boundary 
of the plasma jet is shown for various values of H~ (H~ = 0, 0.5, 10e, lines 1-3), the 
magnetic field substantially changes the shape of the jet boundary. The jet begins to be 
compressed, to an increasing extent when the ponderomotive force is stronger (Fig. i, curves 
2, 3). At some values of the vector magnitude the applied magnetic field, e.g., for H~ = 1 
and 0.50e or less, the ponderomotive force simply compresses the jet boundary. When H~ in- 
creases to 1.50e the nature of the flow in the jet changes and zones of subsonic flow form. 
Numerical calculations showed that with supersonic flow the jet radius has a minimum value 
(in the given case R, z 90 caliber), which is reached at the limiting ponderomotive force. 
If the ponderomotive force exceeds the limiting value, the nature of the flow in the jet 
changes, and regions of subsonic flow appear. Under the given conditions this is observed 
for H~ = 1.50e and z = 40-50 caliber. As the ponderomotive force increases further, the 
zone of subsonic flow moves closer to the plasma source. 

The mechanism by which regions of subsonic flow appear in the plasma jet in the magnetic 
field is due to the dissipative effect that the magnetic force has on the plasma velocity. 
With zero magnetic field for a jet flowing into a homogeneous external medium, the magnitude 
of the velocity vector at the boundary field line is constant (Fig. 2, line i). The magnetic 
field hinders radial expansion of the jet, thus reducing the radial component of the velocity 
vector, most markedly near the jet boundary. From Fig. 2 we see that the plasma near the 
boundary is slowed more when the magnetic vector is larger (lines 2-4 correspond to H~ = 0.5, 
i, and 1.50e). The gas pressure gradient causes a local redistribution of the boundary com- 
ponents of the velocity vector: the axial component decreases while the radial component in- 
creases, in the final account appreciably decreasing the velocity vector (Fig. 2, lines 2-4). 
The decrease in the velocity vector in the core of the jet is not as substantial as in the 
boundary region. 

Another feature of the effect of the magnetic field on the plasma jet is a change in the 
density profile in the jet. From Fig. 3, where the density profiles are shown in the cross 
section z = 400 for H~ = 0, i, and 1.5 Oe (lines 1-3) we see that compression of the jet 
raises the plasma density in the jet and qualitatively changes its profile. Compactions due 
to retardation of the plasma appear in the boundary region (Fig. 3, curves 2, 3). The ap- 
pearance of such compactions at the boundary between the plasma and the external medium was 
noted, in [8] in particular, where Colgate pointed out that they appear when the plasma is 
expanded in a magnetic field. The effect of the induced magnetic field on the jet with R a = 
i0 cm was insignificant. 
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When R a increases to 50 cm (in this case Re m ~ 3) the effect of the induced field be- 
comes appreciable and the jet becomes much broader than when the induced magnetic field is 
ignored, while the plasma density is lower and the density peaking at the boundary is larger. 

The distribution of the total magnetic field, i.e., the sum of the applied field and 
that induced in!the jet and surrounding space at R a = 50 cm, is illustrated in Fig. 4. The 
greatest perturbation of the applied field manifests itself in the plasma jet and its vicinity. 
This perturbation of the magnetic field is insignificant at a distance (r = 200). Three re- 
gions, each with a characteristic distribution pattern, can be distinguished for the total 
magnetic field: 

i) the initial segment of flow, where the jet expands strongly; here the applied mag- 
netic field is squeezed out of the jet because of the high currents, especially in the 
boundary region; 

2) the middle (z = 150-350) axial part of the jet, when the magnetic field is very low; 

3) the remote part of the jet, where the magnetic field begins to penetrate more actively 
into the weakly expanding jet with lower electrical currents. 
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